.. note:: :class: sphx-glr-download-link-note Click :ref:`here ` to download the full example code .. rst-class:: sphx-glr-example-title .. _sphx_glr_cookbook_SRWLIB_Example06.py: SRW Example #6 ************** Problem ------- Calculating spectral flux of undulator radiation by finite-emittance electron beam collected through a finite aperture and power density distribution of this radiation (integrated over all photon energies) Example Solution ---------------- .. rst-class:: sphx-glr-horizontal * .. image:: /cookbook/images/sphx_glr_SRWLIB_Example06_001.png :class: sphx-glr-multi-img * .. image:: /cookbook/images/sphx_glr_SRWLIB_Example06_002.png :class: sphx-glr-multi-img * .. image:: /cookbook/images/sphx_glr_SRWLIB_Example06_003.png :class: sphx-glr-multi-img * .. image:: /cookbook/images/sphx_glr_SRWLIB_Example06_004.png :class: sphx-glr-multi-img .. rst-class:: sphx-glr-script-out Out: .. code-block:: none SRWLIB Extended Example # 6: Calculating spectral flux of undulator radiation by finite-emittance electron beam collected through a finite aperture and power density distribution of this radiation (integrated over all photon energies) Performing Spectral Flux (Stokes parameters) calculation ... done Performing Power Density calculation (from field) ... done Saving intensity data to file ... done Plotting the results (blocks script execution; close any graph windows to proceed) ... done | .. code-block:: default from __future__ import print_function #Python 2.7 compatibility from srwpy.srwlib import * from srwpy.uti_plot import * import os import sys print('SRWLIB Extended Example # 6:') print('Calculating spectral flux of undulator radiation by finite-emittance electron beam collected through a finite aperture and power density distribution of this radiation (integrated over all photon energies)') #**********************Input Parameters: strExDataFolderName = 'data_example_06' #example data sub-folder name strFluxOutFileName = 'ex06_res_flux.dat' #file name for output UR flux data strPowOutFileName = 'ex06_res_pow.dat' #file name for output power density data strTrjOutFileName = 'ex06_res_trj.dat' #file name for output trajectory data #***********Undulator harmB = SRWLMagFldH() #magnetic field harmonic harmB.n = 1 #harmonic number harmB.h_or_v = 'v' #magnetic field plane: horzontal ('h') or vertical ('v') harmB.B = 1. #magnetic field amplitude [T] und = SRWLMagFldU([harmB]) und.per = 0.02 #period length [m] und.nPer = 150 #number of periods (will be rounded to integer) magFldCnt = SRWLMagFldC([und], array('d', [0]), array('d', [0]), array('d', [0])) #Container of all magnetic field elements #***********Electron Beam eBeam = SRWLPartBeam() eBeam.Iavg = 0.5 #average current [A] eBeam.partStatMom1.x = 0. #initial transverse positions [m] eBeam.partStatMom1.y = 0. eBeam.partStatMom1.z = 0. #initial longitudinal positions (set in the middle of undulator) eBeam.partStatMom1.xp = 0 #initial relative transverse velocities eBeam.partStatMom1.yp = 0 eBeam.partStatMom1.gamma = 3./0.51099890221e-03 #relative energy sigEperE = 0.00089 #relative RMS energy spread sigX = 33.33e-06 #horizontal RMS size of e-beam [m] sigXp = 16.5e-06 #horizontal RMS angular divergence [rad] sigY = 2.912e-06 #vertical RMS size of e-beam [m] sigYp = 2.7472e-06 #vertical RMS angular divergence [rad] #2nd order stat. moments: eBeam.arStatMom2[0] = sigX*sigX #<(x-)^2> eBeam.arStatMom2[1] = 0 #<(x-)(x'-)> eBeam.arStatMom2[2] = sigXp*sigXp #<(x'-)^2> eBeam.arStatMom2[3] = sigY*sigY #<(y-)^2> eBeam.arStatMom2[4] = 0 #<(y-)(y'-)> eBeam.arStatMom2[5] = sigYp*sigYp #<(y'-)^2> eBeam.arStatMom2[10] = sigEperE*sigEperE #<(E-)^2>/^2 #***********Precision Parameters arPrecF = [0]*5 #for spectral flux vs photon energy arPrecF[0] = 1 #initial UR harmonic to take into account arPrecF[1] = 21 #final UR harmonic to take into account arPrecF[2] = 1.5 #longitudinal integration precision parameter arPrecF[3] = 1.5 #azimuthal integration precision parameter arPrecF[4] = 1 #calculate flux (1) or flux per unit surface (2) arPrecP = [0]*5 #for power density arPrecP[0] = 1.5 #precision factor arPrecP[1] = 1 #power density computation method (1- "near field", 2- "far field") arPrecP[2] = 0 #initial longitudinal position (effective if arPrecP[2] < arPrecP[3]) arPrecP[3] = 0 #final longitudinal position (effective if arPrecP[2] < arPrecP[3]) arPrecP[4] = 20000 #number of points for (intermediate) trajectory calculation #***********UR Stokes Parameters (mesh) for Spectral Flux stkF = SRWLStokes() #for spectral flux vs photon energy stkF.allocate(10000, 1, 1) #numbers of points vs photon energy, horizontal and vertical positions stkF.mesh.zStart = 30. #longitudinal position [m] at which UR has to be calculated stkF.mesh.eStart = 10. #initial photon energy [eV] stkF.mesh.eFin = 20000. #final photon energy [eV] stkF.mesh.xStart = -0.0015 #initial horizontal position [m] stkF.mesh.xFin = 0.0015 #final horizontal position [m] stkF.mesh.yStart = -0.00075 #initial vertical position [m] stkF.mesh.yFin = 0.00075 #final vertical position [m] stkP = SRWLStokes() #for power density stkP.allocate(1, 101, 101) #numbers of points vs horizontal and vertical positions (photon energy is not taken into account) stkP.mesh.zStart = 30. #longitudinal position [m] at which power density has to be calculated stkP.mesh.xStart = -0.02 #initial horizontal position [m] stkP.mesh.xFin = 0.02 #final horizontal position [m] stkP.mesh.yStart = -0.015 #initial vertical position [m] stkP.mesh.yFin = 0.015 #final vertical position [m] #stkPx = SRWLStokes() #for power density #stkPx.allocate(1, 101, 1) #numbers of points vs horizontal and vertical positions (photon energy is not taken into account) #stkPx.mesh.zStart = stkP.mesh.zStart #longitudinal position [m] at which power density has to be calculated #stkPx.mesh.xStart = stkP.mesh.xStart #initial horizontal position [m] #stkPx.mesh.xFin = stkP.mesh.xFin #final horizontal position [m] #stkPx.mesh.yStart = 0 #initial vertical position [m] #stkPx.mesh.yFin = 0 #final vertical position [m] #stkPy = SRWLStokes() #for power density #stkPy.allocate(1, 1, 101) #numbers of points vs horizontal and vertical positions (photon energy is not taken into account) #stkPy.mesh.zStart = stkP.mesh.zStart #longitudinal position [m] at which power density has to be calculated #stkPy.mesh.xStart = 0 #initial horizontal position [m] #stkPy.mesh.xFin = 0 #final horizontal position [m] #stkPy.mesh.yStart = stkP.mesh.yStart #initial vertical position [m] #stkPy.mesh.yFin = stkP.mesh.yFin #final vertical position [m] #sys.exit(0) #**********************Calculation (SRWLIB function calls) print(' Performing Spectral Flux (Stokes parameters) calculation ... ', end='') srwl.CalcStokesUR(stkF, eBeam, und, arPrecF) print('done') #partTraj = SRWLPrtTrj() #defining auxiliary trajectory structure #partTraj.partInitCond = eBeam.partStatMom1 #partTraj.allocate(20001) #partTraj.ctStart = -1.6 #Start Time for the calculation #partTraj.ctEnd = 1.6 #partTraj = srwl.CalcPartTraj(partTraj, magFldCnt, [1]) #print(' Performing Power Density calculation (from trajectory) ... ', end='') #srwl.CalcPowDenSR(stkP, eBeam, partTraj, 0, arPrecP) #print('done') print(' Performing Power Density calculation (from field) ... ', end='') srwl.CalcPowDenSR(stkP, eBeam, 0, magFldCnt, arPrecP) #srwl.CalcPowDenSR(stkPx, eBeam, 0, magFldCnt, arPrecP) #srwl.CalcPowDenSR(stkPy, eBeam, 0, magFldCnt, arPrecP) print('done') #**********************Saving results #print(' Saving trajectory data to file ... ', end='') #partTraj.save_ascii(os.path.join(os.getcwd(), strExDataFolderName, strTrjOutFileName)) #print('done') print(' Saving intensity data to file ... ', end='') srwl_uti_save_intens_ascii(stkF.arS, stkF.mesh, os.path.join(os.getcwd(), strExDataFolderName, strFluxOutFileName), 0, ['Photon Energy', '', '', 'Flux'], _arUnits=['eV', '', '', 'ph/s/.1%bw']) srwl_uti_save_intens_ascii(stkP.arS, stkP.mesh, os.path.join(os.getcwd(), strExDataFolderName, strPowOutFileName), 0, ['', 'Horizontal Position', 'Vertical Position', 'Power Density'], _arUnits=['', 'm', 'm', 'W/mm^2']) print('done') #**********************Plotting results (requires 3rd party graphics package) print(' Plotting the results (blocks script execution; close any graph windows to proceed) ... ', end='') uti_plot1d(stkF.arS, [stkF.mesh.eStart, stkF.mesh.eFin, stkF.mesh.ne], ['Photon Energy [eV]', 'Flux [ph/s/.1%bw]', 'Flux through Finite Aperture']) plotMeshX = [1000*stkP.mesh.xStart, 1000*stkP.mesh.xFin, stkP.mesh.nx] plotMeshY = [1000*stkP.mesh.yStart, 1000*stkP.mesh.yFin, stkP.mesh.ny] uti_plot2d(stkP.arS, plotMeshX, plotMeshY, ['Horizontal Position [mm]', 'Vertical Position [mm]', 'Power Density']) #uti_plot1d(stkPx.arS, plotMeshX, ['Horizontal Position [mm]', 'Power Density [W/mm^2]', 'Power Density cut at y = 0']) #uti_plot1d(stkPy.arS, plotMeshY, ['Vertical Position [mm]', 'Power Density [W/mm^2]', 'Power Density cut at x = 0']) powDenVsX = array('f', [0]*stkP.mesh.nx) for i in range(stkP.mesh.nx): powDenVsX[i] = stkP.arS[stkP.mesh.nx*int(stkP.mesh.ny*0.5) + i] uti_plot1d(powDenVsX, plotMeshX, ['Horizontal Position [mm]', 'Power Density [W/mm^2]', 'Power Density\n(horizontal cut at y = 0)']) powDenVsY = array('f', [0]*stkP.mesh.ny) for i in range(stkP.mesh.ny): powDenVsY[i] = stkP.arS[int(stkP.mesh.nx*0.5) + i*stkP.mesh.ny] uti_plot1d(powDenVsY, plotMeshY, ['Vertical Position [mm]', 'Power Density [W/mm^2]', 'Power Density\n(vertical cut at x = 0)']) uti_plot_show() #show all graphs (blocks script execution; close all graph windows to proceed) print('done') .. rst-class:: sphx-glr-timing **Total running time of the script:** ( 0 minutes 4.568 seconds) .. _sphx_glr_download_cookbook_SRWLIB_Example06.py: .. only :: html .. container:: sphx-glr-footer :class: sphx-glr-footer-example .. container:: sphx-glr-download :download:`Download Python source code: SRWLIB_Example06.py ` .. container:: sphx-glr-download :download:`Download Jupyter notebook: SRWLIB_Example06.ipynb ` .. only:: html .. rst-class:: sphx-glr-signature `Gallery generated by Sphinx-Gallery `_